Supercomputer simulation opens prospects for obtaining ultra-dense electron-positron plasmas

phys.org | 3/16/2018 | Staff
jenny124124 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/1-supercompute.jpg

Physicists from the Institute of Applied Physics of the Russian Academy of Sciences, researchers from Chalmers University of Technology and computer scientists from Lobachevsky University have developed a new software tool called PICADOR for numerical modeling of laser plasmas on modern supercomputers.

The work on the PICADOR software system started in 2010. PICADOR is a parallel implementation of the particle-in-cell method that has been optimized for modern heterogeneous cluster systems. The project combined the competencies and efforts of experts from many fields, thus becoming the basis for the well-thought-out optimization and development of new computing approaches that take into account various physical processes. Eventually, this opened the way for a breakthrough in modeling capabilities in a number of research projects. The system's functional capabilities and performance make it possible to perform numerical simulations in a range of problems at the forefront of modern laser plasma physics.

Article - Scientific - Reports - Nizhny - Novgorod

In their article published in Scientific Reports, Nizhny Novgorod scientists formulated the conditions under which the avalanche-like generation of electrons and positrons in the focus of a high-power laser pulse yields an electron-positron plasma of record density. The study will make it possible to understand processes occurring in astrophysical objects and to study elementary particle production processes.

A well-known fact in quantum physics is the possibility of transforming certain particles into other particles. In particular, in a sufficiently strong electric or magnetic field, a gamma photon can decay into two particles, an electron and a positron. Until now, this effect was observed in laboratory conditions mainly when gamma radiation was transmitted through crystals in which sufficiently strong fields exist near atomic nuclei. Scientists seek a new tool for studying this phenomenon: lasers capable of generating short pulses with a power of more than 10 petawatts. This level of power is achieved by extreme focusing of radiation. For...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!