Advance could enable novel high-performance materials

phys.org | 3/7/2018 | Staff
my_new_puppy (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/advancecould.jpg

An engineering physics professor at the University of Wisconsin–Madison has created new materials that behave in an unusual way that defies the standard theory engineers use for designing things like buildings, airplanes, bridges and electronic devices.

It's an advance that could open the door to designing novel materials for applications that require high toughness—for example, airplane wings that are more fracture-resistant.

Elasticity - Theory - Behavior - Materials - Steel

The classical elasticity theory works well for predicting the behavior of most ordinary materials, including steel, aluminum and concrete, and ensuring structures can withstand mechanical forces without breaking or deforming too much. But for some materials, the theory is limiting.

Roderic Lakes and graduate student Zachariah Rueger used 3-D printing to make their new polymer lattice materials. Their design—the pattern in which the materials' polymer strips are arranged—is a repeating crisscross structure. When it's twisted or bent, a bar of this polymer lattice is about 30 times stiffer than would be expected based on classical elasticity theory.

Wisconsin - Researchers - Lattice - Materials - Physical

The Wisconsin researchers described their new lattice materials in the journal Physical Review Letters on Feb. 8, 2018.

Performing measurements in the lab, Lakes determined that the materials' behavior was consistent with Cosserat elasticity, a more descriptive theory of elasticity that takes into consideration the size of the underlying structure in a material.

Material - Substructure - Foams - Lattices - Materials

"When you have a material with substructure in it, such as some foams, lattices and fiber-reinforced materials, there's more freedom in it than classical elasticity theory can handle," Lakes says. "So we're studying the freedom of materials...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!