Scientists confirm century-old speculation on the chemistry of a high-performance battery

phys.org | 2/28/2018 | Staff
Tanya9 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/scientistsco.jpg

Scientists have discovered a novel chemical state of the element manganese. This chemical state, first proposed about 90 years ago, enables a high-performance, low-cost sodium-ion battery that could quickly and efficiently store and distribute energy produced by solar panels and wind turbines across the electrical grid.

This direct proof of a previously unconfirmed charge state in a manganese-containing battery component could inspire new avenues of exploration for battery innovations.

Experiments - US - Department - Energy - Lawrence

X-ray experiments at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) were key in the discovery. The study results were published Feb. 28 in the journal Nature Communications.

Scientists at Berkeley Lab and New York University participated in the study, which was led by researchers at Natron Energy, formerly Alveo Energy, a Palo Alto, California-based battery technology company.

Battery - Natron - Energy - Study - Design

The battery that Natron Energy supplied for the study features an unconventional design for an anode, which is one of its two electrodes. Compared with the relatively mature designs of anodes used in lithium-ion batteries, anodes for sodium-ion batteries remain an active focus of R&D.

The anode featured in this latest study is made up of a blend of elements - including manganese, carbon and nitrogen - that is chemically similar to the formula of the iron-containing paint pigment known as Prussian blue.

Lithium-ion - Sodium-ion - Batteries - Anode - Wanli

"Typically, in lithium-ion and sodium-ion batteries, the anode is more often carbon-based," said Wanli Yang a staff scientist at Berkeley Lab's Advanced Light Source, the source of X-rays that were used in the battery experiments.

But in this case, both of the battery's electrodes utilize the same type of materials based on elements known as "transition metals" that are useful in chemistry because they can exhibit various charged states. The other electrode, called a cathode, contains copper, nitrogen, carbon, and iron.

Part - Electrodes - Chemistry

"The very interesting part here is that both electrodes are based on the chemistry...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
I love to post, but I never read the article!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!