Micromotors made easy

phys.org | 2/14/2018 | Staff
hubbog (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/micromotorsm.jpg

Researchers of the ICN2 Nanobioelectronics and Biosensors Group led by Prof. Arben Merkoçi have devised a simple manufacturing method for versatile graphene oxide-based micromotors. Requiring no special equipment, it can be used to produce a range of micromotors that can be further tuned for different purposes. Luis Baptista-Pires explains the process in the paper published in Small.

Any motor requires fuel and performs work. At the microscale, they can be designed such that, when released into an aqueous environment, they carry out a range of tasks—all manner of actions that allow them to interact with living cells, chemical pollutants and even circuitry at the micro-scale.

Motors - Researchers - ICN2 - Nanobioelectronics - Biosensors

The motors developed by researchers of the ICN2 Nanobioelectronics and Biosensors Group, led by ICREA Prof. Arben Merkoçi, have been used in test conditions to remove oil droplets from water. Comprising tiny rolled sheets of graphene oxide, these structures can zip around easily through both oil and water, picking up any oil particles they encounter and transporting them as cargo for later release.

But the real breakthrough, and the focus of the paper published in Small, is the innovative, almost playfully simple production method used to build them. Adapting an existing in-house technology, a graphene oxide solution is poured onto a wax-printed paper membrane. It acts as a kind of mould which, when wetted and hand-shaken from side to side in ethanol, sets and releases multiple self-rolled graphene oxide tubes – the basic building blocks of the micromotors.

Part - Manufacturing - Process - Micromotors - Platinum

As part of the same manufacturing process, these roll-up micromotors can be lined with platinum. When the motors are released into the environment where they will perform their task, a small quantity of hydrogen peroxide is also added. The platinum reacts with it, creating bubbles that impel forward motion. Alternatively, the motors can be...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!