First high-precision measurement of the mass of the W boson at the LHC | 2/12/2018 | Staff
shardonay (Posted by) Level 3
Click For Photo:

In a paper published today in the European Physical Journal C, the ATLAS Collaboration reports the first high-precision measurement at the Large Hadron Collider (LHC) of the mass of the W boson. This is one of two elementary particles that mediate the weak interaction – one of the forces that govern the behaviour of matter in our universe. The reported result gives a value of 80370±19 MeV for the W mass, which is consistent with the expectation from the Standard Model of Particle Physics, the theory that describes known particles and their interactions.

The measurement is based on around 14 million W bosons recorded in a single year (2011), when the LHC was running at the energy of 7 TeV. It matches previous measurements obtained at LEP, the ancestor of the LHC at CERN, and at the Tevatron, a former accelerator at Fermilab in the United States, whose data made it possible to continuously refine this measurement over the last 20 years.

W - Boson - Particles - Universe - Discovery

The W boson is one of the heaviest known particles in the universe. Its discovery in 1983 crowned the success of CERN's Super proton-antiproton Synchrotron, leading to the Nobel Prize in physics in 1984. Although the properties of the W boson have been studied for more than 30 years, measuring its mass to high precision remains a major challenge.

"Achieving such a precise measurement despite the demanding conditions present in a hadron collider such as the LHC is a great challenge," said the physics coordinator of the ATLAS Collaboration, Tancredi Carli. "Reaching similar precision, as previously obtained at other colliders, with only one year of Run 1...
(Excerpt) Read more at:
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!