New technology will create brain wiring diagrams

ScienceDaily | 1/12/2018 | Staff
jster97 (Posted by) Level 3
Click For Photo: https://www.sciencedaily.com/images/2018/01/180112095938_1_540x360.jpg

A paper describing the work appears online in the December 12 issue of eLife. The research was done in the laboratory of Caltech research professor Carlos Lois.

"If an electrical engineer wants to understand how a computer works, the first thing that he or she would want to figure out is how the different components are wired to each other," says Lois. "Similarly, we must know how neurons are wired together in order to understand how brains work."

Neurons - Structure - Synapse - Space - Neuron

When two neurons connect, they link together with a structure called a synapse, a space through which one neuron can send and receive electrical and chemical signals to or from another neuron. Even if multiple neurons are very close together, they need synapses to truly communicate.

The Lois laboratory has developed a method for tracing the flow of information across synapses, called TRACT (Transneuronal Control of Transcription). Using genetically engineered Drosophila fruit flies, TRACT allows researchers to observe which neurons are "talking" and which neurons are "listening" by prompting the connected neurons to produce glowing proteins.

TRACT - Neuron - Talks - Chemical - Signal

With TRACT, when a neuron "talks" -- or transmits a chemical or electrical signal across a synapse -- it will also produce and send along a fluorescent protein that lights up both the talking neuron and its synapses with a particular color. Any neurons "listening" to the signal receive this protein, which binds to a so-called receptor molecule -- genetically built-in by the researchers -- on the receiving neuron's surface. The binding of the signal protein activates the receptor and triggers the neuron it's attached to in order to produce its own, differently colored fluorescent protein. In this way, communication between neurons becomes visible. Using a type of microscope that can peer through a thin window installed on the fly's head, the researchers can observe the colorful glow of neural...
(Excerpt) Read more at: ScienceDaily
0 other people are viewing this story
Wake Up To Breaking News!
Sign In or Register to comment.