Surprising discovery could lead to better batteries

techxplore.com | 1/12/2018 | Staff
jster97 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/surprisingdi.jpg

A collaboration led by scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has observed an unexpected phenomenon in lithium-ion batteries—the most common type of battery used to power cell phones and electric cars. As a model battery generated electric current, the scientists witnessed the concentration of lithium inside individual nanoparticles reverse at a certain point, instead of constantly increasing. This discovery, which was published on January 12 in the journal Science Advances, is a major step toward improving the battery life of consumer electronics.

"If you have a cell phone, you likely need to charge its battery every day, due to the limited capacity of the battery's electrodes," said Esther Takeuchi, a SUNY distinguished professor at Stony Brook University and a chief scientist in the Energy Sciences Directorate at Brookhaven Lab. "The findings in this study could help develop batteries that charge faster and last longer."

Lithium-ion - Battery - Particles - Atoms - Structure

Inside every lithium-ion battery are particles whose atoms are arranged in a lattice—a periodic structure with gaps between the atoms. When a lithium-ion battery supplies electricity, lithium ions flow into empty sites in the atomic lattice.

"Previously, scientists assumed that the concentration of lithium would continuously increase in the lattice," said Wei Zhang, a scientist at Brookhaven's Sustainable Energy Technologies Department. "But now, we have seen that this may not be true when the battery's electrodes are made from nano-sized particles. We observed the lithium concentration within local regions of nanoparticles go up, and then down—it reversed."

Electrodes - Nanoparticles - Order - Battery - Power

Electrodes are often made from nanoparticles in order to increase a battery's power density. But scientists have not been able to fully understand how these electrodes function, due to a limited ability to watch them work in action. Now, with a unique combination of experimental tools, the scientists were able to image reactions inside the electrodes in real...
(Excerpt) Read more at: techxplore.com
0 other people are viewing this story
Wake Up To Breaking News!
Sign In or Register to comment.