Quantum Dot: Extremely bright and fast light emission

ScienceDaily | 1/10/2018 | Staff
jenny1246 (Posted by) Level 3
Click For Photo: https://www.sciencedaily.com/images/2018/01/180110131458_1_540x360.jpg

Three years ago, Maksym Kovalenko, a professor at ETH Zurich and Empa, succeeded in creating nanocrystals -- or quantum dots, as they are also known -- from this semiconductor material. "These tiny crystals have proved to be extremely bright and fast emitting light sources, brighter and faster than any other type of quantum dot studied so far," says Kovalenko. By varying the composition of the chemical elements and the size of the nanoparticles, he also succeeded in producing a variety of nanocrystals that light up in the colours of the whole visible spectrum. These quantum dots are thus also being treated as components for future light-emitting diodes and displays.

In a study published in the most recent edition of the scientific journal Nature, the international research team examined these nanocrystals individually and in great detail. The scientists were able to confirm that the nanocrystals emit light extremely quickly. Previously-studied quantum dots typically emit light around 20 nanoseconds after being excited when at room temperature, which is already very quick. "However, caesium lead halide quantum dots emit light at room temperature after just one nanosecond," explains Michael Becker, first author of the study. He is a doctoral student at ETH Zurich and is carrying out his doctoral project at IBM Research.

Lead - Halide - Dots - Entails - World

Understanding why caesium lead halide quantum dots are not only fast but also very bright entails diving into the world of individual atoms, light particles (photons) and electrons. "You can use a photon to excite semiconductor nanocrystals so that an electron leaves its original place in the crystal lattice, leaving behind a hole," explains David Norris, Professor of Materials Engineering at ETH Zurich. The result is an electron-hole pair in an excited energy state. If the electron-hole pair reverts to its energy ground state, light is emitted.

Under certain conditions, different excited energy...
(Excerpt) Read more at: ScienceDaily
0 other people are viewing this story
Wake Up To Breaking News!
Tagged:
Sign In or Register to comment.