Bridging tumor moats with potent drug delivery particles

phys.org | 1/10/2018 | Staff
spiderMonkey (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/bridgingtumo.jpg

Despite herculean efforts, cancer remains a formidable disease, with each malignant subtype responding differently to therapeutics. One hurdle specific to treating solid tumors is a protective layer called an extracellular matrix that can prevent chemotherapeutic agents from penetrating the tumor's core. Scientists now report results in ACS' Chemistry of Materials showing that, by cloaking anti-cancer drugs in a specially designed particle, they could target and destroy tumor cells deep inside a malignant mass in vitro.

For tumors that can't be extracted with surgery, radiation and chemotherapy are the treatments of choice, but both can involve serious side effects due to a lack of specificity: They'll kill healthy cells along with malignant ones. Researchers have long known that, thanks to the unique blood vessel architecture surrounding tumors, nanoparticles can easily pass into the cancer zone, offering a potential route for the specific delivery of chemotherapies to cancer cells. However, efforts to exploit this phenomenon have fallen short, with experimental drug-loaded particles failing because they can't get through the dense extracellular matrix or they lose the therapeutic payload en route to the tumor's interior. Alejandro Baeza, C. Jeffrey Brinker, Maria Vallet-Regi and colleagues addressed this shortcoming by developing a brand-new type of particle.

Researchers - Protocell - Nanoparticle - Matrix - Doses

The researchers created a "protocell," a nanoparticle that can carve through the extracellular matrix, delivering cell-killing doses of drug to the deepest tumor regions. To develop the protocell, the team started with a mesoporous silica skeleton with a high internal surface area that can contain a large amount of drug. They surrounded this skeleton with a lipid bilayer outfitted with an array of tools to help the protocell deliver its drug arsenal to the desired locale, including enzymes that cleave collagen, a major component of the tumor's extracellular matrix. The protocell also...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!