Sensing atoms caught in ripples of light | 9/27/2017 | Staff
jenn1020 (Posted by) Level 3
Click For Photo:

Optical fibers are ubiquitous, carrying light wherever it is needed. These glass tunnels are the high-speed railway of information transit, moving data at incredible speeds over tremendous distances. Fibers are also thin and flexible, so they can be immersed in many different environments, including the human body, where they are employed for illumination and imaging.

Physicists use fibers, too, particularly those who study atomic physics and quantum information science. Aside from shuttling laser light around, fibers can be used to create light traps for super-chilled atoms. Captured atoms can interact more strongly with light, much more so than if they were moving freely. This rather artificial environment can be used to explore fundamental physics questions, such as how a single particle of light interacts with a single atom. But it may also assist with developing future hybrid atom-optical technologies.

Researchers - Joint - Quantum - Institute - Army

Now, researchers from the Joint Quantum Institute and the Army Research Laboratory have developed a fast-acting, non-invasive way to use fiber light to reveal information about fiber traps. This technique is reminiscent of biomedical and chemical sensors that use fibers to detect properties of nearby molecules. Fiber sensors are an attractive measurement tool because they can often extract information without totally disrupting interesting phenomena that may be going on. The research appeared as an Editor's Pick in the journal Optics Letters . The team also published a review article about optical nanoscale fibers in the most recent volume of Advances in Atomic, Molecular, and Optical Physics .

Typical optical fibers, like the ones used in communications and medicine, have only a tiny amount of light near the outside surface, and that is not enough to capture atoms from a surrounding gas. Physicists can push more light to the outside by reshaping the fiber to look like a tiny hourglass instead of a tunnel. The...
(Excerpt) Read more at:
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!