Microbes endure a variety of inhospitable conditions in California's Mono Lake

phys.org | 9/26/2019 | Staff
KimmyPooKimmyPoo (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/hires/2020/microbesendu.jpg

Microbes found across distinct layers in California's Mono Lake may be surviving by using a variety of carbohydrates for energy, according to a recent study.

New research presented last month at the 2019 American Geophysical Union Fall Meeting in San Francisco described bacteria that thrive in the inhospitable lake across a variety of nutrient conditions. Researchers predict that these bacteria, which express more carbohydrate utilization genes than their competitors, succeed by being able to adapt to use available energy sources. The research helps scientists understand how bacteria survive in extreme environments as well as how bacterial communities shift following changes in nutrient levels.

Mono - Lake - Soda - Lake - Edge

Mono Lake is a saline soda lake located on the eastern edge of the Sierra Nevada, a few miles outside of Yosemite National Park. Compared to the ocean, the water in the lake has over twice as much salt, is 50 times as basic, and has 600 times as much arsenic. Yet life still manages to thrive in these inhospitable conditions: algae, brine shrimp, and alkali flies all call this lake home. Additionally, there are microbial communities hidden in the water's depths.

Even stranger environmental conditions arose during recent years because of heavy snowfalls and a large inflow of freshwater into Mono Lake. Because the water in the lake is so salty, the freshwater forms a distinct layer on top.

Oil - Water - John - Tracey - Graduate

"It's just like oil and water," said John Tracey, a graduate researcher at Princeton University who presented the work. This phenomenon, where distinct water layers form in lakes, is known as meromixis. Up until now, researchers haven't known how meromixis affects microbial communities in Mono Lake.

"Oxygen from the atmosphere can't be stirred into the lake by wind," Tracey said. "The surface is oxygenated but at the bottom of the lake, as far as our sensor tells us, there's no oxygen." There...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
This space intentionally left blank
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!