Making new catalysts from unique metallic alloys

phys.org | 11/8/2018 | Staff
entengoentengo (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/2020/makingnewcat.jpg

Heusler alloys are magnetic materials made from three different metals that are not magnetic individually. The alloys are used broadly for their magnetic and thermoelectric properties, and their ability to regain their original shape after being deformed, known as shape memory. Investigations by Tohoku University's advanced materials scientist An-Pang Tsai and colleagues now show that these materials can also be fine-tuned to speed up chemical reactions. This catalytic capability is reviewed in the journal Science and Technology of Advanced Materials.

Heusler alloys have a typical composition of two parts metal X, one part metal Y, and one part metal Z (X2YZ). Each of the three come from a distinct region of the periodic table of elements. The original Heusler alloy, discovered in 1898, was Cu2MnAl, made from copper, manganese and aluminium. Many other combinations of metals were later found within the X2YZ arrangement.

Tsai - Colleagues - Type - Structure - Quasicrystals

While Tsai and his colleagues were investigating another type of structure, called quasicrystals, in the late 1980s, they created a series of new compounds by substituting existing elements with others from their same groups in the periodic table, as long as they had a similar atomic size. They later applied this concept to fabricate a large number of new Heusler alloys.

Tsai and his colleagues investigated the potential of 12 Heusler alloys as catalysts for propyne hydrogenation, a reaction that is used in the plastics industry, and for the oxidation of carbon monoxide, an important process for controlling...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Tagged:
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!