New insight on how bacteria evolve drug resistance could lead to improved antibiotic therapies

ScienceDaily | 10/29/2019 | Staff
Their findings in the multidrug-resistant bacterium Pseudomonas aeruginosa (P. aeruginosa), published today in eLife, suggest the strategy could be exploited to develop new and sustainable antibiotic treatments.

"Antibiotic resistance is one of the most serious threats to public health worldwide," says first author Camilo Barbosa, formerly a postdoctoral student in senior author Hinrich Schulenburg's lab at the Kiel Evolution Center (KEC) of Kiel University, Germany. "The World Health Organization warns of a post-antibiotic era in which infections can no longer be treated and could become one of the most frequent non-natural causes of death.

Evolution - Resistance - Drugs - Periods - Time

"The rapid evolution of antibiotic resistance makes antibacterial drugs ineffective within short periods of time, which means we need new strategies to maintain or even improve the effectiveness of existing antibiotics. But this development needs to take the relevant evolutionary processes into account, or else new drugs will likely fail."

In this study, Barbosa and his colleagues looked into an evolutionary trade-off called collateral sensitivity in P. aeruginosa. Collateral sensitivity occurs when bacteria evolve resistance to one drug but develop increased sensitivity to another drug at the same time.

Variety - Cases - Collateral - Sensitivities - Treatment

"While a variety of distinct cases of collateral sensitivities have previously been described, it was still unclear whether they could be exploited for antibiotic treatment," Barbosa explains. "We tested one key requirement of this principle for medical implementation: stability of the evolutionary trade-off. Is collateral sensitivity stable across time, thereby allowing us to exploit it...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
The American Government, working tireless for everyone, except Americans.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!