Marine pathogenic bacterium forms specialized cells for dissemination

phys.org | 7/5/2016 | Staff
vpp1219 (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/2019/pathogensfro.jpg

Vibrio parahaemolyticus can be found in the tidal zones in estuarine areas. The marine bacterium causes acute gastroenteritis in humans and is the leading cause for seafood borne illnesses in the world. Researchers from the Max Planck Institute for terrestrial Microbiology in Marburg, Germany, have identified specialized "adventurer" cells that ensure the bacterium's dissemination and prevalence. Their new findings are an important basis for the future management of the disease.

In Central and Northern Europe, Vibrio infections are among the "emerging diseases" whose incidence has recently increased or is likely to increase in the near future. Some reasons for this are global trade and the higher water temperatures caused by global climate change. Mussels, oysters and crabs that are found in our supermarkets from tropical regions are possibly contaminated all year round and to a high percentage. They can cause an infection if eaten raw or are insufficiently cooked.

Vibrio - Parahaemolyticus - Forms - Colonies - Zone

Vibrio parahaemolyticus forms colonies in the tidal zone of estuarine areas, and its complex life cycle is triggered by the respective conditions of this habitat. But how does the species adapt to environmental changes, and how can it colonize new habitats? "In order to develop any measures against the spread of Vibrio parahaemolyticus and related bacteria, we must first understand the structure and distribution strategy of the bacterial colonies," explains Simon Ringgaard of the Max Planck Institute for Terrestrial Microbiology in Marburg. In their laboratory, he and his team simulate the conditions of the tidal zone and thus investigate the bacterial life cycle and mechanisms of movement.

As many other bacteria, Vibrio parahaemolyticus forms special cell types when environmental conditions require it. While short swimmer cells with a single polar flagellum can move quickly in a liquid environment, the longer swarm cells reside within bacterial populations that are attached to solid surfaces. Swarmer cells...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Don't believe everything you think...
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!