Uncovering the principles behind RNA folding

phys.org | 10/31/2016 | Staff
Click For Photo: https://scx2.b-cdn.net/gfx/news/2019/7-uncoveringth.jpg

A Northwestern Engineering research team led by Professor Julius Lucks has uncovered a new understanding of how RNA molecules act as cellular 'biosensors' to monitor and respond to changes in the environment by controlling gene expression. The findings could impact the design of future RNA-specific therapeutics as well as new synthetic biology tools that measure the presence of toxins in the environment.

RNA molecules play a pivotal role in storing and propagating genetic information like DNA, as well as performing functions critical to living systems like proteins. At the core of its function is its ability to undergo origami-style folding into intricate shapes inside the cell.

Sequencing - Technology - Lab - Shapes - RNAs

Using high-throughput next-generation sequencing technology developed in his lab that chemically images the dynamic shapes RNAs fold into, Lucks found similarities in the folding tendencies among a family of RNA molecules, called riboswitches. Riboswitches act as natural biosensors to monitor the internal and external state of cells. When a riboswitch binds to a molecule, it changes its shape, causing a change in gene expression.

"These riboswitches have evolved to fold into very specific shapes so they can recognize other compounds, change their shape when they bind to them, and ultimately induce a change in gene expression," said Lucks, associate chair and professor of chemical and biological engineering at the McCormick School of Engineering. "There's been little studied about how exactly they can fold and adjust those shapes, especially since they do so before the RNAs are fully made. We learned that there is an evolutionary pressure on RNAs to not only fold into the final structure, but to have a pathway to do so similarly and efficiently."

Paper - Work - Ligand - Gated - Strand

A paper outlining the work, titled "A Ligand Gated Strand Displacement Mechanism for ZTP Riboswitch Transcription Control," was published on October 21 in the journal Nature Chemical Biology. The study was...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
The American Government, working tireless for everyone, except Americans.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!