In a first, scientists pinpoint neural activity's role in human longevity

ScienceDaily | 10/16/2019 | Staff
liizu (Posted by) Level 3
The study, published Oct. 16 in Nature, is based on findings from human brains, mice and worms and suggests that excessive activity in the brain is linked to shorter life spans, while suppressing such overactivity extends life.

The findings offer the first evidence that the activity of the nervous system affects human longevity. Although previous studies had suggested that parts of the nervous system influence aging in animals, the role of neural activity in aging, especially in humans, remained murky.

Aspect - Findings - Something - Activity - State

"An intriguing aspect of our findings is that something as transient as the activity state of neural circuits could have such far-ranging consequences for physiology and life span," said study senior author Bruce Yankner, professor of genetics at HMS and co-director of the Paul F. Glenn Center for the Biology of Aging.

Neural excitation appears to act along a chain of molecular events famously known to influence longevity: the insulin and insulin-like growth factor (IGF) signaling pathway.

Key - Cascade - Protein - REST - Yankner

The key in this signaling cascade appears to be a protein called REST, previously shown by the Yankner Lab to protect aging brains from dementia and other stresses.

Neural activity refers to the constant flicker of electrical currents and transmissions in the brain. Excessive activity, or excitation, could manifest in numerous ways, from a muscle twitch to a change in mood or thought, the authors said.

Study - Person - Thoughts - Personality - Behavior

It's not yet clear from the study whether or how a person's thoughts, personality or behavior affect their longevity.

"An exciting future area of research will be to determine how these findings relate to such higher-order human brain functions," said Yankner.

Study - Design - Therapies - Conditions - Overactivity

The study could inform the design of new therapies for conditions that involve neural overactivity, such as Alzheimer's disease and bipolar disorder, the researchers said.

The findings raise the possibility that certain medicines, such as drugs that target REST, or certain behaviors, such as meditation,...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!