GaN power ICs with integrated sensors for efficient charging of electric vehicles

phys.org | 5/11/2017 | Staff
jenny1246jenny1246 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/5cd03222a6dcc.jpg

A team of Fraunhofer researchers has succeeded in significantly enhancing the functionality of GaN power ICs for voltage converters: the researchers at Fraunhofer IAF integrated current and temperature sensors onto a GaN-based semiconductor chip, along with power transistors, freewheeling diodes and gate drivers. This development paves the way for more compact and efficient on-board chargers in electric vehicles.

For vehicles with electric drive to become a lasting presence in society, there needs to be greater flexibility in charging options. To make use of charging stations using alternating current, wall charging stations or conventional plug sockets where possible, users are dependent on on-board chargers. As this charging technology is carried in the vehicle, it must be as small and lightweight as possible, and also cost-efficient. It therefore requires extremely compact yet efficient power electronics systems such as voltage converters.

Fraunhofer - Institute - Applied - Solid - State

The Fraunhofer Institute for Applied Solid State Physics IAF has been conducting research on monolithic integration in the field of power electronics for several years. This requires several components such as power components, the control circuit and sensors to be combined on a single semiconductor chip. The concept makes use of the semiconductor material gallium nitride. Back in 2014, the researchers at Fraunhofer IAF succeeded in integrating intrinsic freewheeling diodes and gate drivers on a 600V-class power transistor. In 2017, a monolithic GaN half bridge was then operated at 400V for the first time.

The latest research results combine current and temperature sensors and 600V-class power transistors with intrinsic freewheeling diodes and gate drivers in a GaN power IC for the first time. As part of the GaNIAL research project, the researchers have provided functional verification of full functionality in a GaN power IC, achieving a breakthrough in the integration density of power electronics systems. "By additionally integrating sensors on the GaN chip, we have...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!