HD microscopy in milliseconds

phys.org | 3/24/2016 | Staff
Matty123 (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/hires/2019/hdmicroscopy.jpg

They can make tiny cell structures visible: cutting-edge light microscopes offer resolutions of a few tenths of a nanometer—in other words, a millionth of a millimeter. Until now, super-resolution microscopes were much slower than conventional methods, because more or finer image data had to be recorded. Together with partners from Jena, researchers from "Bielefeld" University have now developed the super-resolution SR-SIM process further. The academics show that SR-SIM is also possible in real time and at a very high imaging rate—and thus suitable for observing movements of very small cell particles, for example. Their findings have been published today (20 September) in the journal Nature Communications.

"This is what makes this type of microscopy really useful for applications in biology or medicine. The problem so far is that microscopes offering a sufficiently high resolution cannot display information at the corresponding speed," says Professor Dr. Thomas Huser, who heads the Biomolecular Physics Working Group at Bielefeld University. The SR-SIM project is funded by the German Research Foundation (DFG) and the European Union through Marie Skłodowska-Curie Actions.

Stands - Super-resolution - Illumination - Microscopy - Fluorescence

SR-SIM stands for "super-resolution structured illumination microscopy" and is a fluorescence microscopy procedure. Objects are irradiated with laser light. This light excites special fluorescent molecules in the sample so that they re-emit light at a different wavelength. The microscopic image then shows the re-emitted light. "Unlike other conventional fluorescence microscopy methods, SR-SIM does not illuminate the specimens uniformly, but with a fine, grid-like pattern. This special technology enables much higher resolution," says Huser.

The procedure consists of two steps: the light re-emitted by the specimen is first recorded in several individual images. The finished image is then reconstructed on a computer from these raw data. "The second step, in particular, has cost a great deal of time so far," says Andreas Markwirth, also a member of Bielefeld University's...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!