Platinum-graphene fuel cell catalysts show superior stability over bulk platinum

phys.org | 9/6/2019 | Staff
MijacMijac (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/hires/2019/platinumgrap.jpg

Films of platinum only two atoms thick supported by graphene could enable fuel cell catalysts with unprecedented catalytic activity and longevity, according to a study published recently by researchers at the Georgia Institute of Technology.

Platinum is one of the most commonly used catalysts for fuel cells because of how effectively it enables the oxidation reduction reaction at the center of the technology. But its high cost has spurred research efforts to find ways to use smaller amounts of it while maintaining the same catalytic activity.

Cost - Fuel - Cell - Platinum - Catalysts

"There's always going to be an initial cost for producing a fuel cell with platinum catalysts, and it's important to keep that cost as low as possible," said Faisal Alamgir, an associate professor in Georgia Tech's School of Materials Science and Engineering. "But the real cost of a fuel cell system is calculated by how long that system lasts, and this is a question of durability.

"Recently there's been a push to use catalytic systems without platinum, but the problem is that there hasn't been a system proposed so far that simultaneously matches the catalytic activity and the durability of platinum," Alamgir said.

Georgia - Tech - Researchers - Strategy - Study

The Georgia Tech researchers tried a different strategy. In the study, which was published on September 18 in the journal Advanced Functional Materials and supported by the National Science Foundation, they describe creating several systems that used atomically-thin films of platinum supported by a layer of graphene—effectively maximizing the total surface area of the platinum available for catalytic reactions and using a much smaller amount of the precious metal.

Most platinum-based catalytic systems use nanoparticles of the metal chemically bonded to a support surface, where surface atoms of the particles do most of the catalytic work, and the catalytic potential of the atoms beneath the surface is never utilized as fully as the surface atoms, if...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!