Researchers discover compound that speeds sexual development and decline

phys.org | 8/7/2013 | Staff
newusr01 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/1-btiresearche.jpg

Every day, people are exposed to myriad chemicals, both natural and synthetic. Some of these compounds may affect human physical development, but testing them directly on people would be grossly unethical.

To get around this dilemma, researchers from Boyce Thompson Institute used Caenorhabditis elegans, a soil roundworm, to show that tiny amounts of natural compounds can dramatically influence time to sexual maturity and lifespan.

August - Issue - Nature - Chemical - Biology

As described in the August issue of Nature Chemical Biology, researchers from BTI Professor Frank Schroeder's lab and Ilya Ruvinsky's lab at Northwestern University discovered that a compound excreted by male worms - and to a lesser extent by their hermaphrodite counterparts - speeds egg-laying and hastens the death of the hermaphrodites.

While the discovery was made in C. elegans, humans and other animals make similar compounds and possess similar molecular pathways. "That means that in humans, too, tiny amounts of small molecules from the environment, produced by microbes in our bodies, or taken up as a side effect of social interactions could affect the timing of puberty and pace of our decline," said Schroeder.

Work - Andreas - Ludewig - Research - Associate

The work was initiated by Andreas Ludewig, a research associate in the Schroeder lab, who had previously found that a high population density of worms accelerated development and reduced lifespan of hermaphrodites. In parallel, Ruvinsky's group had found that males caused a similar effect.

The two groups joined forces and discovered the compound responsible, an N-acylated glutamine called nacq#1.

Researchers - Concentrations - Picomolar - Amount - Time

The researchers found extremely low concentrations of nacq#1, down to 10 picomolar, shortened the amount of time needed for worms to reach sexual maturity. As a result of earlier maturity, the worms laid 30% more eggs on the first day of egg laying, which, under some environmental conditions, can be a significant advantage for a species with a lifecycle of only about two weeks.

Additionally, nacq#1 triggered...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Aim and timing is evereything.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!