Turning water into ice in the quantum realm

phys.org | 7/1/2019 | Staff
Traight (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/turningwater.jpg

When you pop a tray of water into the freezer, you get ice cubes. Now, researchers from the University of Colorado Boulder and the University of Toronto have achieved a similar transition using clouds of ultracold atoms.

In a study that will appear August 2 in the journal Science Advances, the team discovered that it could nudge these quantum materials to undergo transitions between "dynamical phases"—essentially, jumping between two states in which the atoms behave in completely different ways.

Phase - Systems - Water - Ice - Study

"This happens abruptly, and it resembles the phase transitions we see in systems like water becoming ice," said study co-author Ana Maria Rey. "But unlike that tray of ice cubes in the freezer, these phases don't exist in equilibrium. Instead, atoms are constantly shifting and evolving over time."

The findings, she added, provide a new window into materials that are hard to investigate in the laboratory.

Example - Quantum - Communications - System - Signals

"If you want to, for example, design a quantum communications system to send signals from one place to another, everything will be out of equilibrium," said Rey, a fellow at JILA, a joint institute between CU Boulder and the National Institute of Standards and Technology (NIST). "Such dynamics will be the key problem to understand if we want to apply what we know to quantum technologies."

Scientists have observed similar transitions before in ultracold atoms, but only among a few dozen charged atoms, or ions.

Rey - Colleagues - Contrast - Clouds - Tens

Rey and her colleagues, in contrast, turned to clouds made up of tens of thousands of uncharged, or neutral, fermionic atoms. Fermionic atoms, she said, are the introverts of the periodic table of elements. They don't want to share their space with their fellow atoms, which can make them harder to control in cold atom laboratories.

"We were really wandering in a new territory not knowing what we would find," said study coauthor Joseph Thywissen, a professor...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Faith cometh by hearing, and hearing by the Word of God.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!