Extremely hard yet metallically conductive: Researchers develop novel material with high-tech prospects

phys.org | 6/27/2019 | Staff
moni (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/5d23288ada82b.jpg

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in Nature Communications.

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was believed that these properties could not occur simultaneously in the same material and were therefore incompatible. But this prejudice has been soundly refuted by the research work now published, which has passed through two stages of development in Hamburg and Bayreuth:

Scientists - Rhenium - Pernitride - Experiments - Laboratory

Initially, the scientists synthesized the rhenium nitride pernitride in high-pressure experiments in a laboratory at the University of Bayreuth, and subsequently characterised it chemically and structurally at the German Electron Synchrotron (DESY). Under a compression pressure of 40 to 90 gigapascals, small amounts of this material were produced in a diamond anvil cell. Re2(N2)(N)2 is its chemical formula. "The crystal structure that we discovered in Hamburg's synchrotron X-ray facility PETRA III surprised us very much: It contains both single nitrogen atoms and the N-N nitrogen dumbbells, in which two nitrogen atoms are strongly bound to each other. This internal structure obviously creates a very high resistance to pressure acting on the crystals from the outside: Rhenium nitride pernitride is ultra-incompressible," says Dr. Maxim Bykov, postdoctoral researcher at the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI)...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!