Small fragments of carbon-rich asteroids too fragile to survive atmospheric entry

phys.org | 7/11/2019 | Staff
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/smallfragmen.jpg

Ryugu and other asteroids of the common "C-class" consist of more porous material than was previously thought. Small fragments of their material are therefore too fragile to survive entry into the atmosphere in the event of a collision with Earth. This has revealed the long-suspected cause of the deficit of this meteorite type in finds on Earth. Researchers at the German Aerospace Center (Deutsches Zentrum fuer Luft- und Raumfahrt, DLR) have come to this conclusion in a scientific paper published in the journal Nature Astronomy. The results are based on high-resolution measurements of the surface temperature with the DLR radiometer MARA on board the German-French Mobile Asteroid Surface Scout (MASCOT) lander. On 3 October 2018, as part of the Japanese Hayabusa2 mission, MASCOT descended onto the almost one-kilometre-diameter asteroid Ryugu and sent spectacular images and physical measurements from the surface back to Earth.

"Ryugu surprised us," says Matthias Grott, Principal Investigator for the MARA radiometer experiment at the DLR Institute of Planetary Research in Berlin and lead author of the study. "On the asteroid, we observed only larger fragments that are highly porous and probably very fragile." Earlier telescopic infrared light curves of such carbon-rich asteroids acquired from Earth had been interpreted by researchers studying their thermal properties as bodies covered in sand- to pebble-sized particles. In total, 21 DLR scientists from institutes in Berlin, Bremen and Cologne participated in the study, together with international partners. "MASCOT has brought together DLR's broad range of expertise in space research—from design, development and testing to experience in the scientific exploration of the solar system," says Hansjoerg Dittus, DLR Executive Board Member for Space Research and Technology. "The first published results are impressive proof of this."

Meteorites - Earth - Fragments - C-type - Asteroids

Until now, only a few chondritic meteorites found on Earth have been identified as fragments of C-type asteroids, which...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
The beatings will continue until moral improves.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!