Redefining the limits of measurement accuracy

phys.org | 3/25/2019 | Staff
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/redefiningth.jpg

For centuries, humans have been expanding their understanding of the world through more and more precise measurement of light and matter. Today, quantum sensors achieve extremely accurate results. An example of this is the development of atomic clocks, which are expected to neither gain nor lose more than a second in thirty billion years. Gravitational waves were detected via quantum sensors as well, in this case by using optical interferometers.

Quantum sensors can reach sensitivities that are impossible according to the laws of conventional physics that govern everyday life. Those levels of sensitivity can only be reached if one enters the world of quantum mechanics with its fascinating properties—such as the phenomenon of superposition, where objects can be in two places at once and where an atom can have two different energy levels at the same time.

States - Level - Sensitivity - Measurements - Interference

Both generating and controlling such non-classical states is extremely complex. Due to the high level of sensitivity required, these measurements are prone to external interference. Furthermore, non-classical states must be adapted to a specific measurement parameter. "Unfortunately, this often results in increased inaccuracy regarding other relevant measurement parameters", says Fabian Wolf, describing the challenge. This concept is closely linked to Heisenberg's uncertainty principle. Wolf is part of a team of researchers from Leibniz University Hannover, Physikalisch-Technische Bundesanstalt in Braunschweig, and the National Institute of Optics in Florence. The team introduced a method based on a non-classical state adapted to two measurement parameters at once.

The experiment can be visualised as the quantum mechanical version of a simple pendulum. In this case, the adapted measurement parameters...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
"Tyranny sincerely exercised for the good of its victims may be the most oppressive." C.S. Lewis
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!