Biological evolution inspires machine learning

ScienceDaily | 6/18/2019 | Staff
gbabii05 (Posted by) Level 3
In a new study published in the journal Artificial Life, a research team led by Nicholas Guttenberg and Nathaniel Virgo of the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology, Japan, and Alexandra Penn of The Centre for Evaluation of Complexity Across the Nexus (CECAN), University of Surrey UK (CRESS), examine the connection between biological evolutionary open-endedness and recent studies in machine learning, hoping that by connecting ideas from artificial life and machine learning, it will become possible to combine neural networks with the motivations and ideas of artificial life to create new forms of open-endedness.

One source of open-endedness in evolving biological systems is an "arms race" for survival. For example, faster foxes may evolve to catch faster rabbits, which in turn may evolve to become even faster to get away from the faster foxes. This idea is mirrored in recent developments involving placing networks in competition with each other to produce things such as realistic images using generative adversarial networks (GANs), and to discover strategies in games such as Go, which can now easily beat top human players. In evolution, factors such as mutation can limit the extent of an arms race. However, as neural networks have been scaled up, no such limitation seems to exist and the network can continue to improve as additional data is fed to their algorithms.

Guttenberg - Graduate - School - Years - Focus

Guttenberg had been studying evolutionary open-endedness since graduate school, but it was only in the last few years that his focus shifted to artificial intelligence and neural networks. Around that time, methods such as GANs were invented, which struck him as very similar to the open-ended co-evolutionary systems he had previously worked on. Suddenly, he saw an opportunity to tear down a barrier between the communities to help make progress on something which had for...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Been there, done that, twice...
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!