3-D printing electrically assisted, nacre-inspired structures with self-sensing capabilities

phys.org | 3/16/2015 | Staff
jster97 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/3dprintingel.jpg

Nacre, also known as mother of pearl is a composite, organic-inorganic material produced in nature in the inner shell layer of molluscs and the outer coating of pearls. The material is resilient and iridescent with high strength and toughness, resulting from its brick-and-mortar-like architecture. Lightweight and strong materials are of interest in materials science due to their potential in multidisciplinary applications in sports, aerospace, transportation and biomedicine. In a recent study, now published in Science Advances, Yang Yang and co-workers at the interdisciplinary departments of Systems Engineering, Chemical, Biomedical and Aerospace Engineering at the University of Southern California, developed a route to build nacre-inspired hierarchical structures with complex 3-D shapes via electrically assisted 3-D printing.

To create a brick-and-mortar-like structure in the work, they aligned graphene nanoplatelets (GNs) as bricks in the electric field (433 V/cm) during 3-D printing and included the polymer matrix as a mortar. The bioinspired 3-D printed nacre with aligned GNs (2 percent weight) were lightweight (1.06 g/cm3), albeit with specific toughness and strength similar to the natural nacre counterpart. The 3-D printed lightweight, smart armor aligned GNs could sense surface damage to exert resistance change during electrical applications. The study highlighted interesting possibilities for bioinspired nanomaterials with hierarchical architecture tested in a proof-of-principle, mini smart helmet. Projected applications include integrated mechanical reinforcement, electrical self-sensing capabilities in biomedicine, aerospace engineering as well as military and sports appliances.

Lightweight - Materials - Sensors - Attention - Health

Lightweight and strong structural materials such as multifunctional wearable sensors have attracted increasing attention in health monitoring, but most piezoelectric sensors are soft and cannot protect the surface of interest. A protective, multifunctional wearable sensor is currently in demand for military and sports applications therefore. The hierarchical structure of nacre in nature provides superior mechanical performance, notwithstanding its relatively weak constituents to protect the soft body in molluscs. The secret to...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!