Study identifies a key to soybean cyst nematode growth

phys.org | 3/28/2019 | Staff
samtetley (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/illinoisstud.jpg

The soybean cyst nematode, one of the crop's most destructive pests, isn't like most of its wormy relatives. Whereas the vast majority of nematodes look like the microscopic worms they are, the female soybean cyst nematode shape-shifts into a tiny lemon after feeding on soybean roots. In a new EvoDevo article, a University of Illinois research team explains how it happens and why.

"We think the soybean cyst nematode has evolved this body shape so that they can produce a lot more offspring," says Nathan Schroeder, assistant professor in the Department of Crop Sciences at the University of Illinois and corresponding author on the new study. "If you compare the most closely related species that stay long and skinny, they have a lot fewer babies than this lady does."

Round - Shape - Cyst - Nematodes - Two-thirds

The round shape allows female soybean cyst nematodes to retain about two-thirds of their fertilized eggs inside their bodies. As embryos develop, the mother's body hardens to become a protective cyst. Schroeder says these adaptations have allowed the soybean cyst nematode to become as successful as it is.

From previous research with a different species, the scientists suspected seam cells were responsible for the shift from long and skinny to fat and round. Seam cells, which have stem-cell-like properties, run the length of these worms and divide to enlarge the epidermis every time the worms molt.

Division - Molt - Set - Nuclei - Epidermis

"Normally, there's one division for each molt, creating one new set of nuclei in the multinucleated epidermis. We found that with soybean cyst nematode, they divide multiple times after infection, molt, divide even more times, molt, divide even more times. You have exponential growth which leads to this...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!