Not all stem cells are created equal, study reveals

phys.org | 3/22/2019 | Staff
normanorma (Posted by) Level 4
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2019/notallstemce.jpg

Researchers from the University of Toronto's Institute for Biomaterials and Biomedical Engineering (IBBME) and the Donnelly Centre have discovered a population of cells – dubbed to be "elite" – that play a key role in the process of transforming differentiated cells into stem cells. The finding has important implications for regenerative medicine.

Stem cells have the ability to transform into specialized cells – from lung to brain. Stem cells are common in embryos, but within the last 15 years, a technique called cell reprogramming has enabled scientists to turn mature cells back into so-called pluripotent stem cells, with the power to develop into any cell type. The technique was recognized with the Nobel Prize in 2012.

Intricacies - Reprogramming - Cells - Population - Setting

While reprogramming is well understood, less is known about the intricacies of how individual reprogramming cells behave in a population setting. University Professor Peter Zandstra's group (he is a dual appointment at U of T and the University of British Columbia) recently led a study examining this, and found a group of cells that appear to have a competitive advantage in reprogramming. The research is published today in Science.

Zandstra and his team used cells extracted from mouse skin, known as mouse embryonic fibroblasts (MEFs). They used DNA-barcoding technologies to give each MEF a unique tag, track individual cells during reprogramming and associate them with their parent population. They also used computational modelling to help understand the complex data generated and to make predictions that were tested in the lab.

Team - Percent - Cell - Population - Week

The team found that up to 80 percent of the original cell population was eliminated after one week of reprogramming. Only a small percentage of the parent generation was fit enough to propagate their clones and turn into stem cells during the stressful reprogramming process. Although these cells have a similar genetic makeup and outward appearance compared to...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Homeschool or State Thought Police School, you choose.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!