Investigating cell stress for better health—and better beer

phys.org | 2/12/2019 | Staff
oxboy (Posted by) Level 4
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/12-investigatin.jpg

Human beings are not the only ones who suffer from stress—even microorganisms become stressed out. Now, researchers from Chalmers University of Technology, Sweden, have devised a new method to study how single biological cells react to stressful situations. Understanding these responses could lead to more effective drugs for serious diseases. Additionally, the research could even help to brew better beer.

All living organisms can experience stress during challenging situations. Cells and microorganisms have complicated systems to govern how they adapt to new conditions. They can alter their own structure by incorporating or releasing many substances into the surroundings. Due to the complexity of these molecular processes, understanding these systems is a difficult task.

Chalmers - Researchers - Daniel - Midtvedt - Erik

Chalmers researchers Daniel Midtvedt, Erik Olsén, Fredrik Höök and Gavin Jeffries investigated how individual yeast cells react to changes in the local environment—in this case, an increased osmolarity, or concentration, of salt. They both identified and monitored the change of compounds within the yeast cells, one of which was a sugar, glycerol. Furthermore, they were able to measure the exact rate and amount of glycerol produced by different cells under various stress conditions. Their results have now been published in Nature Communications.

"Yeast and bacteria have very similar systems when it comes to response to stress, meaning the results are very interesting from a medical point of view. This could help us understand how to make life harder for undesirable bacteria that invade our body—a means to knock out their defence mechanisms," says Daniel Midtvedt, researcher in biological physics at Chalmers, and lead writer of the scientific paper.

Subject - Colleagues - Variant

He has been researching the subject since 2015, and, together with his colleagues, has developed a variant...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!