Robust approach for minimizing costs in power-distribution networks

phys.org | 2/11/2019 | Staff
Tanya9 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2019/planningahea.jpg

Scientists at Tokyo Institute of Technology have developed a new method for scheduling the activation and deactivation of power generators that minimizes costs and ensures reliability while addressing the issues prevalent in previous methods.

Electrical generators have start-up and shut-down times and associated costs. Because multiple generators are generally available at any given time, and they cannot be activated or deactivated quickly, network operators usually schedule these "on" and "off" operations in advance according to predicted loads in order to reduce costs. These schedules are made based on mathematical models and strategies that deal with a tradeoff involving minimizing costs and saving energy on the one hand, and ensuring reliability on the other.

Family - Optimization - Problems - Unit - Commitment

One such family of mathematical optimization problems is referred to as "unit commitment (UC)" and has been used to determine the required states (on/off) of generators in power systems. As mentioned before, these problems and the schedule are determined in advance, which implies having to deal with uncertainty in multiple variables across the board, such as load, generator availability and failures, and renewable energy input. Available methods to devise such schedules have several disadvantages. Some of them take the scheduled period as a whole and require accounting for the dynamics of the generators and uncertain variables, but this uncertainty is usually not properly addressed and overly conservative schedules are obtained. Other methods are unable to deal with energy storage systems, which are essential for renewable energy technologies.

Considering these problems, a team of researchers from Tokyo Institute of Technology (Tokyo Tech), led by Professor Jun-ichi Imura, developed...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
I love to post, but I never read the article!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!