Researchers discover a metamaterial with inherently robust sound transport

phys.org | 12/31/2018 | Staff
Celtics2212 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/5c2a2895b4f0e.jpg

Researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York and at the City College of New York (CCNY) have developed a metamaterial that can transport sound in unusually robust ways along its edges and localize it at its corners.

According to a new paper published today in Nature Materials, the newly engineered material creates a robust acoustic structure that can control in unusual ways the propagation and localization of sound even when fabrication imperfections exist. This unique property may improve technologies that use sound waves, such as sonars and ultrasound devices, making them more resistant to defects.

Research - Collaboration - Labs - Alexander - Khanikaev

The research is a collaboration between the labs of Alexander Khanikaev, a professor in the electrical engineering and physics departments at CCNY who is also affiliated with the ASRC, and of Andrea Alù, director of the ASRC's Photonics Initiative. Their advance is based on work that brought a field of mathematics called topology into the materials science world. Topology studies properties of an object that are not affected by continuous deformations. For instance, a donut is topologically equivalent to a plastic straw, as they both have one hole. One could be molded into the other by stretching and deforming the object, and without tearing it or adding new holes.

Using topological principles, researchers predicted and later discovered topological insulators—special materials that conduct electric currents only on their edges, not in the bulk. Their unusual conduction properties stem from the topology of their electronic band gap, and they are therefore unusually resistant to continuous changes, such as disorder, noise or imperfections.

Lot - Interest - Ideas - Currents - Types

"There has been a lot of interest in trying to extend these ideas from electric currents to other types of signal transport, in particular to the fields of topological photonics and topological acoustics," Alù says. "What we...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!