Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation

phys.org | 12/7/2018 | Staff
applekip (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/5-harnessingth.jpg

Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory.

Spin-orbit coupling, the coupling of the qubits' orbital and spin degree of freedom, allows the manipulation of the qubit via electric, rather than magnetic-fields. Using the electric dipole coupling between qubits means they can be placed further apart, thereby providing flexibility in the chip fabrication process.

Approaches - Science - Advances - Team - Scientists

In one of these approaches, published in Science Advances, a team of scientists led by UNSW Professor Sven Rogge investigated the spin-orbit coupling of a boron atom in silicon.

"Single boron atoms in silicon are a relatively unexplored quantum system, but our research has shown that spin-orbit coupling provides many advantages for scaling up to a large number of qubits in quantum computing" says Professor Rogge, Program Manager at the Centre for Quantum Computation and Communication Technology (CQC2T).

Results - UNSW - Team - Month - Physical

Following on from earlier results from the UNSW team, published last month in Physical Review X, Rogge's group has now focused on applying fast read-out of the spin state (1 or 0) of just two boron atoms in an extremely compact circuit all hosted in a commercial transistor.

"Boron atoms in silicon couple efficiently to electric fields, enabling rapid qubit manipulation and qubit coupling over large distances. The electrical interaction also allows coupling to other quantum systems, opening up the prospects of hybrid quantum systems," says Rogge.

Piece - Research - Professor - Michelle - Simmons

Another piece of recent research by Professor Michelle Simmons' team at UNSW has also highlighted the role of spin orbit coupling in atom-based qubits in silicon, this time with phosphorus atom qubits. The research was recently published in npj Quantum Information.

The research revealed surprising results. For electrons...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!