LIGO supercomputer upgrade will speed up groundbreaking astrophysics research

phys.org | 12/6/2018 | Staff
gabriella250 (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/5c0907539961a.jpg

In 2016, an international team of scientists found definitive evidence—tiny ripples in space known as gravitational waves—to support one of the last remaining untested predictions of Einstein's theory of general relativity. The team used the Laser Interferometer Gravitational-Wave Observatory (LIGO), which has since made several gravitational wave discoveries. Each discovery was possible in part because of a global network of supercomputer clusters, one of which is housed at Penn State. Researchers use this network, known as the LIGO Data Grid, to analyze the gravitational wave data.

Penn State recently invested in an upgrade to its portion of the data grid that will roughly quadruple the cluster's capacity for conducting cutting-edge astronomy and astrophysics research. The new cluster, 192 servers working in tandem, is administered by the Institute for CyberScience (ICS). Bangalore Sathyaprakash, professor of astronomy and astrophysics and Elsbach Professor of Physics; and Chad Hanna, associate professor of physics and astronomy and astrophysics, and ICS co-hired faculty member, are the primary researchers who will be using the new system with their research team and collaborators.

Penn - State - Aspects - Wave - Astronomy

"At Penn State we're involved in all aspects of gravitational wave astronomy, which we use to learn about the universe," said Sathyaprakash. "Until the discovery of gravitational waves, the only way we could observe the universe was using light, radio waves or gamma rays, which all belong to the electromagnetic spectrum. Gravitational waves allow us to create a complementary picture of the universe and reveal processes and phenomena that might not otherwise be revealed through electromagnetic observation."

The new cluster will vastly increase the speed at which researchers can complete analysis, according to Chad Hanna. He and colleagues recently finished the first study that used data housed on Penn State's LIGO cluster. The team designed an experiment to quantify the number of binary black holes in the universe...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
With God all things are possible, but not probable.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!