Distinguishing resistance from resilience to prolong antibiotic potency

phys.org | 12/5/2018 | Staff
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/1-distinguishi.jpg

Biomedical engineers at Duke University have shown experimentally that there is more than one flavor of antibiotic resistance and that it could—and should—be taken advantage of to keep first-line antibiotics in our medical arsenal.

In a study appearing online Dec. 7 in the journal Science Advances, the researchers show why doctors should be paying more attention to whether a pathogen is resistant or merely resilient against common beta-lactam antibiotics, such as penicillin and its derivatives.

Strains - Bacteria - Dose - Antibiotics - Disturbance

Resistant strains of bacteria can soldier through a dose of beta-lactam antibiotics with little disturbance to their population levels. Resilient strains, however, suffer a population crash before their community can secrete enough beta-lactamase enzymes to degrade the antibiotic to a tolerable level. If clinicians test an infection by dosing a culture and checking only the end results, they miss the difference between resistant and resilient responses.

"Clinicians have not historically distinguished between these two scenarios," said Lingchong You, the Paul Ruffin Scarborough Associate Professor of Engineering at Duke. "But as beta-lactam-tolerant pathogens become more common, I believe this distinction could become extremely important."

Bacterium - Antibiotics - Resilience - Community - Cells

While an individual bacterium can be resistant to antibiotics, resilience only arises within a community. This happens when bacterial cells produce enough beta-lactamases to degrade the antibiotics, but not enough to save themselves from the initial onslaught. As some cells die and release more and more of the enzyme, however, the population as a whole eventually rids their environment of the antibiotic.

In the paper, You and Hannah Meredith, now a postdoctoral researcher at the London...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!