Molecular details of protein reveal glimpse into how kidney stones form

ScienceDaily | 10/10/2018 | Staff
With new information gained from TRPV5's molecular structure, researchers will now be able to use bioinformatics to discover compounds that interact with TRPV5 to treat and prevent kidney stones in at-risk populations. The team published their findings in Nature Communications.

Led by Vera Moiseenkova-Bell, PhD, an associate professor of Systems Pharmacology and Translational Therapeutics, the team captured an image of the TRPV5 ion channel protein in both an open and closed state. All cells have channels in their outer membranes that allow for the flow of small ions such as sodium, potassium, or calcium. This two-way movement aids in many roles for example, triggering an immune response, communicating between brain cells, and filtering by the kidney.

Percent - Calcium - Kidney - Tubules - TRPV5

Close to 99 percent of calcium is reabsorbed by kidney tubules, and TRPV5 is only made in the cells that line tubules where calcium level in the urine is maintained. Most kidney stones contain calcium, and too much calcium in urine predisposes people to the formation of these painful deposits.

Cryo-EM uses an electron beam to take thousands of snapshots of individual frozen protein molecules. Algorithms then combine the multiple images to sharpen the overall picture of a molecular structure. Using these images, Moiseenkova-Bell, who is also director of Penn's Beckman Center for Cryo-Electron Microscopy, and her team revealed the TRPV5 structure to...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!