World's first-ever 4D printing for ceramics

ScienceDaily | 8/18/2018 | Staff
kshama-s (Posted by) Level 3
Click For Photo: https://www.sciencedaily.com/images/2018/08/180818115803_1_540x360.jpg

Ceramic has a high melting point, so it is difficult to use conventional laser printing to make ceramics. The existing 3D-printed ceramic precursors, which are usually difficult to deform, also hinder the production of ceramics with complex shapes.

To overcome these challenges, the CityU team has developed a novel "ceramic ink," which is a mixture of polymers and ceramic nanoparticles. The 3D-printed ceramic precursors printed with this novel ink are soft and can be stretched three times beyond their initial length. These flexible and stretchable ceramic precursors allow complex shapes, such as origami folding. With proper heat treatment, ceramics with complex shapes can be made.

Team - Professor - Jian - Lu - Vice-President

The team was led by Professor Jian Lu, Vice-President (Research and Technology) and Chair Professor of Mechanical Engineering, who is a distinguished materials scientist with research interests ranging from fabricating nanomaterials and advanced structural materials to the computational simulation of surface engineering.

With the development of the elastic precursors, the research team has achieved one more breakthrough by developing two methods of 4D printing of ceramics.

Printing - Printing - Element - Time - Dimension

4D printing is conventional 3D printing combined with the additional element of time as the fourth dimension, where the printed objects can re-shape or self-assemble themselves over time with external stimuli, such as mechanical force, temperature, or a magnetic field.

In this research, the team made use of the elastic energy stored in the stretched precursors for shape morphing. When the stretched ceramic precursors are released, they undergo self-reshaping. After heat treatment, the precursors turn into ceramics.

Ceramics - Strength-to-density - Ratio - MPa - Microlattice

The resultant elastomer-derived ceramics are mechanically robust. They can have a high compressive strength-to-density ratio (547 MPa on 1.6 g cm-3 microlattice), and they can come in large sizes with high strength compared to other printed ceramics.

"The whole process sounds simple, but it's not," said Professor Lu. "From making the ink to developing the printing system, we tried...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!