Magnetic antiparticles offer new horizons for information technologies

ScienceDaily | 8/15/2018 | Staff
urbanagirl3 (Posted by) Level 3
Click For Photo: https://www.sciencedaily.com/images/2018/08/180815105325_1_540x360.jpg

Moving electrons around in circuits is the basis for creating useful functions in electronics. But would their guiding principles still apply for positrons, i.e., the antiparticle version of electrons? Besides their scarcity in nature, basic electrodynamics suggests that everything would essentially function the same way with positive charges as it does with the negative ones of electrons -- up to a difference in sign, since electrons and positrons move in opposite directions in electromagnetic fields.

However, this question remains open for nanoscale magnetic particles called skyrmions. Skyrmions represent whirls of magnetic moments that extend across a few nanometers and can be found in magnetic films a few atoms thick. In the same way that spheres and doughnuts have different topologies, skyrmions possess a special property called topological charge which plays a similar role to electric charges when their dynamics are concerned. For example, if an applied force causes skyrmions to be deflected toward the left, then that same force will lead antiskyrmions, their antiparticle counterpart, to deflect toward the right. Since the first experimental observations in 2009, skyrmions have been the focus of intense research because they offer new ways to store data and process information.

Physicists - Phenomena - Ferromagnets - Skyrmions - Antiskyrmions

Now physicists have shown that much richer phenomena can occur in nanometer-thick ferromagnets in which both skyrmions and antiskyrmions coexist. By using state-of-the-art simulation techniques to compute the magnetic properties and dynamics in such films, they studied how skyrmions and antiskyrmions respond when electric currents are applied to exert a force on them. At low currents, the expected behavior is seen where opposite topological charges get deflected in opposite directions as a result of the same applied forces. As the current is gradually increased, however, their motion no longer mirrors each other. While skyrmions continue to travel in straight lines, antiskyrmions begin to undergo curved trajectories,...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
You can never use the word unexpected when it comes to abuse of power by the government.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!