Light receptors determine the behaviour of flashlight fish

phys.org | 7/12/2018 | Staff
joyy (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/5b47501aabc9c.jpg

Biologists at the Ruhr-Universität Bochum characterized new, unknown photoreceptors from the bioluminescent flashlight fish Anomalops katoptron. The photoreceptors known as opsins allow the fish to detect light with a specific wavelength. As published on the 11th July 2018 in Plos One the scientists found new opsin variants, which are specialized to detect low intensity blue light in the wavelength range of bioluminescent light emitted by the fish. The blue light can be used to influence the fish behaviour.

The authors conclude that this specific blue light receptors and light processing is an evolutionary adaptation to the ecological environment of the fish. The study is an interdisciplinary biological approach combining the expertise of geneticist Dr. Minou Nowrousian and Prof Dr. Ulrich Kück, molecular biologist Dr. Melanie Mark, zoologists Dr. Jens Hellinger and Dr. Marcel Donner as well as physiologist and optogeneticist Prof Dr. Stefan Herlitze.

Fact - Bioluminescence - Phenomenon - Marine - Environments

Besides the fact that bioluminescence is a widespread phenomenon in marine environments it is currently not known, how bioluminescence is processed and which physiological and behavioural consequences bioluminescence is evoking in most species. The flashlight fish Anomalops katoptron can be seen in shallow waters of coral reeves at moonless nights and is found during the day in caves up to 400 metres deep. Light organs are situated under the eye, which produce blue light with a wavelength of 490 nanometres, which is used to detect and hunt prey.

The research team analysed the photoreceptor composition of the retina and found two visual pigments, which resemble the visual pigments expressed in the mammalian retina. Both of these photoreceptors are activated by low intensity blue light in the range of 490 nanometres, which match the wavelength range of its...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!