On the path to new high-performance transistors

phys.org | 7/11/2018 | Staff
PaMe (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/5b45f378e0959.jpg

The electronics industry expects a novel high-performance transistor made of gallium nitride to offer considerable advantages over present-day high-frequency transistors. Yet many fundamental properties of the material remain unknown. Now, for the first time, researchers at the Paul Scherrer Institute PSI have observed electrons while they were flowing in this promising transistor. For that they used the world's top-performing source of soft X-rays at PSI's Swiss Light Source SLS. This unique experiment was conducted by PSI researchers together with colleagues from Russia and Romania. Their finding: When going into the high power regime of the gallium nitride transistor, in specific directions the electrons move more efficiently. This insight will help to develop faster and more powerful transistors – a prerequisite for converting our communication network to the coming 5G standard. The researchers have now published their results in the journal Nature Communications.

For smartphones and more broadly for the mobile communication technology of the near future, a new generation of semiconductor components is urgently needed: Today's prevalent 3G/4G standard for mobile communication is running up against its performance limits. Its successor, 5G, is supposed to be commercially available by 2020. This standard will offer higher frequencies (up to 100 gigahertz), higher data rates (up to 20 Gb/s), higher network densities, and more efficient use of energy. However, the more powerful high-frequency transmitters required for this cannot be realised using traditional transistors and conventional semiconductor technology.

Researchers - World - HEMT - Devices - High-electron-mobility

Therefore, researchers around the world are working on an alternative: HEMT devices – high-electron-mobility transistors – based on gallium nitride. In a HEMT electrons can move freely in a layer one-millionth of a millimetre thick between two semiconductors. In their experiment, PSI researcher Vladimir Strocov and his colleagues looked into the question of how one might, through clever construction of a HEMT, contribute to an optimal flow...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!