Quantum dots found to reduce fibrils in Parkinson's mouse models

phys.org | 7/10/2018 | Staff
Mireille (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/5b44ba1b256db.jpg

A large team of researchers with members from several institutions in the U.S., Korea and Japan has found that injecting quantum dots into the bloodstreams of mice led to a reduction in fibrils associated with Parkinson's disease. In their paper published in the journal Nature Nanotechnology, the group describes their studies of the impact of quantum dots made of graphene on synuclein and what they found.

Quantum dots are particles that exist at the nanoscale and are made of semiconducting materials. Because they exhibit quantum properties, scientists have been conducting experiments to learn more about changes they cause to organisms when embedded in their cells. In this new effort, the researchers became interested in the idea of embedding quantum dots in synuclein cells.

Synucleins - Group - Family - Proteins - Tissue

Synucleins make up a group or family of proteins and are typically found in neural tissue. One type, an alpha-synuclein, has been found to be associated with the formation of fibrils as part of the development of Parkinson's disease. To see how such a protein might react when exposed to quantum dots, the researchers combined the two in a petri dish and watched what happened. They found that the quantum dots became bound to the protein, and in so doing, prevented it from clumping into fibrils. They also found that doing so after fibrils had already formed caused them to come apart. Impressed with their findings, the team pushed their research further.

Noting that quantum dots are small enough to pass through the blood/brain barrier, they injected quantum dots into mice with induced...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
There's no problem on the inside of a kid that the outside of a dog can't cure.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!