Researchers discover roles and teamwork of CRISPR-Cas proteins

phys.org | 6/13/2018 | Staff
Sugar12 (Posted by) Level 4
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/102-researchersd.jpg

Recently published research from the University of Georgia and UConn Health provides new insight about the basic biological mechanisms of the RNA-based viral immune system known as CRISPR-Cas.

CRISPR-Cas, short for Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated, is a defense mechanism that has evolved in bacteria and archaea that these single celled organisms use to ward off attacks from viruses and other invaders. When a bacterium is attacked by a virus, it makes a record of the virus's DNA by chopping it up into pieces and incorporating a small segment of the invader's DNA into its own genome. It then uses this DNA to make RNAs that bind with a bacterial protein that then kills the viral DNA.

System - Hopes - Genes - Humans - Diseases

The system has been studied worldwide in hopes that it can be used to edit genes that predispose humans to countless diseases, such as diabetes and cancer. However, to reach this end goal, scientists must gain further understanding of the basic biological process that leads to successful immunity against the invading virus.

Distinguished Research Professor of Biochemistry and Molecular Biology in UGA's Franklin College of Arts and Sciences and principal investigator for the project Michael Terns and UGA postdoctoral fellow Masami Shiimori collaborated with Brenton Graveley and Sandra Garrett at UConn Health to sequence millions of genomes to learn more about the process. Graveley is professor and chair of the Department of Genetics and Genome Sciences and associate director of the Institute for Systems Genomics at UConn Health, and Garrett is a postdoctoral fellow in his laboratory.

Research - Studies - CRISPR - Application - Terns

"This research is more fundamental and basic than studies that are trying to determine how to use CRISPR for therapeutic or biomedical application," said Terns. "Our study is about the unique first step in the process, known as adaptation, where fragments of DNA are recognized and integrated into the...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Merry Christmas! It's not just for December any longer!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!