Precise deuteration using heavy water

phys.org | 6/6/2018 | Staff
PaMe (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/precisedeute.jpg

NUS chemists have developed a more effective method using heavy water splitting to swap hydrogen atoms on organic molecules with their heavier cousins (deuterium) for pharmaceutical applications.

By incorporating deuterium (a heavy isotope of hydrogen) in medicinal drug molecules, it can improve their metabolism while retaining therapeutic effects. This has emerged as a viable strategy for the development of more effective drugs for the pharmaceutical industry. In this process, selected hydrogen atoms in the drug molecules are exchanged with deuterium atoms in a process known as deuteration. The resulting carbon-deuterium (C-D) bonds which are stronger (more inert) than the carbon-hydrogen (C-H) bonds change the absorption, distribution, and toxicological properties of the drugs. This is typically carried out using the hydrogen/ deuterium (H/D) exchange process. The process involves high temperatures, acidic/ alkaline reagents and/ or noble metal catalysts, and is carried out over multiple cycles. However, such processing conditions may cause drug molecules to degrade and many unwanted side reactions may occur due to the presence of the various molecular functional groups.

Team - Prof - LOH - Kian - Ping

A team led by Prof LOH Kian Ping, from the Department of Chemistry, NUS in collaboration with Shenzhen University has developed a method which can selectively control the deuteration of organic molecules (which can be used for medicinal drugs) and operate under mild reaction conditions. This is achieved by using a II-VI semiconductor as catalyst to photochemically spilt heavy water (D2O). D2O is made up of the hydrogen isotope...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Tagged:
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!