Astronomers find evidence for stars forming just 250 million years after Big Bang

phys.org | 5/16/2018 | Staff
eymira (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/almafindsmos.jpg

Not long after the Big Bang, the first generations of stars began altering the chemical make-up of primitive galaxies, slowly enriching the interstellar medium with basic elements such as oxygen, carbon, and nitrogen. Finding the earliest traces of these common elements would shed important light on the chemical evolution of galaxies, including our own.

New observations with the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the faint, telltale signature of oxygen coming from a galaxy at a record-setting distance of 13.28 billion light-years from Earth, meaning we are observing this object it as it appeared when the universe was only 500 million years old, or less than 4 percent its current age.

Galaxy - MACS1149-JD1 - Traces - Oxygen - Stars

For such a young galaxy, known as MACS1149-JD1, to contain detectable traces of oxygen, it must have begun forging stars even earlier: a scant 250 million years after the Big Bang. This is exceptionally early in the history of the universe and suggests that rich chemical environments evolved quickly.

"I was thrilled to see the signal of the most distant oxygen," explains Takuya Hashimoto, the lead author of the research paper published in the journal Nature and a researcher at Osaka Sangyo University and the National Astronomical Observatory of Japan.

Galaxy - Chemical - Maturity - Wei - Zheng

"This extremely distant, extremely young galaxy has a remarkable chemical maturity to it," said Wei Zheng, an astronomer at Johns Hopkins University in Baltimore, who led the discovery of this galaxy with the Hubble Space Telescope and estimated its distance. He also is a member of the ALMA research team. "It is truly remarkable that ALMA detected an emission line—the fingerprint of a particular element—at such a record-breaking distance."

Following the Big Bang, the chemical composition of the universe was starkly limited, with not even a trace of elements like oxygen. It would take several generations of star birth and supernovas to seed the...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
A slice out of infinity
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!