A micro-thermometer to record tiny temperature changes

phys.org | 5/14/2018 | Staff
Mireille (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/2018/amicrothermo.jpg

Scientists at Tokyo Institute of Technology (Tokyo Tech) and their collaborators have developed a micrometer-wide thermometer that is sensitive to heat generated by optical and electron beams, and can measure small and rapid temperature changes in real time. This new device can be used to explore heat transport on the micro- and nano-scales, and in optical microscopy and synchrotron radiation experiments.

There is an urgent need for a device that can measure thermal behavior on the nanoscale and in real time, as this technology could be applied in photo-thermal cancer treatment as well as in advanced research on crystals, optical light harvesting, etc. Moreover, a miniaturized thermal microscopy system with a nanoscale heat source and detector is essential for future development of next-generation transistors that will be employed in designing new nanoscale devices.

Thermocouple - Device - Conductors - Junctions - Temperatures

A thermocouple is an electrical device consisting of two dissimilar electrical conductors forming electrical junctions at differing temperatures. A thermocouple produces a temperature-dependent voltage, which can be interpreted to measure temperature. The micro-thermocouple recently developed by scientists at Tokyo Institute of Technology and their collaborators is of major importance to researchers in many fields. This device consists of a gold and nickel thermocouple on a silicon nitride membrane and is miniaturized to the extent that the electrodes are only 2.5 μm wide and the membrane is just 30 nm thick. For such a system to be used as a thermal characterization device, i.e., a thermometer, it must show sensitivity to temperature change. The...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
There's no problem on the inside of a kid that the outside of a dog can't cure.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!