Azopolymer material allows light-assisted imprinting of nanostructures for structurally colored surfaces

phys.org | 9/11/2017 | Staff
emiliaemilia (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/2020/5e1f20b7e8e27.jpg

Structural colors appear because the imprinted pattern on a surface changes the wavelengths of light. Chinese scientists have introduced an azopolymer that allows the imprinting of nanopatterns in a novel room-temperature lithographic process. A key aspect of the technique is the light-induced phase change of a novel azopolymer, explains the study published in the journal Angewandte Chemie. The process relies solely on light regulation and allows nanoimprinting even on flexible substrates.

Delicately structured surfaces are present in many relevant areas, including anticounterfeiting of banknotes and chip manufacturing. In the electronics industry, surface patterns, such as printed circuits, are created by photolithographic processes. Photolithography means that a photoresist, a polymeric material sensitive to ultraviolet (UV) light, is irradiated through a mask. The weakened areas are washed away, and the structures are finished by etching, imprinting, and other processes. To prepare the photoresist for UV-light irradiation, heating and cooling are important steps, which cause changes in the material behavior.

Materials - Cooling - Problems - Patterns - Haifeng

Unfortunately, materials tend to shrink upon cooling, which poses problems when nanosized patterns are desired. Therefore, Haifeng Yu and his colleagues from Peking University have developed a nanolithography process that works entirely at room temperature. Key to the method is a novel photoresist that changes its mechanical behavior solely by light irradiation. A heating step is no longer necessary. The new photoresist contains a chemical...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
The Democratic Party would be dead without the Republican Enabler Party! GOPe, fighting for Democrats since...
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!