Photosynthesis seen in a new light by rapid X-ray pulses

phys.org | 8/28/2018 | Staff
shankay (Posted by) Level 3
Click For Photo: https://scx2.b-cdn.net/gfx/news/hires/2019/1-photosynthes.jpg

The ability to transform sunlight into energy is one of Nature's more remarkable feats. Scientists understand the basic process of photosynthesis, but many crucial details remain elusive, occurring at dimensions and fleeting time scales long deemed too minuscule to probe.

Now, that is changing.

Study - Petra - Fromme - Nadia - Zatsepin

In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

PSI is a large biomolecular system that acts as a solar energy converter transforming solar energy into chemical energy. Photosynthesis provides energy for all complex life on Earth and supplies the oxygen we breathe. Advances in unraveling the secrets of photosynthesis promise to improve agriculture and aid in the development of next-generation solar energy storage systems that combine the efficiency of Nature with the stability of human engineered systems.

Work - Proof - Concept - Crystallography - Membrane

"This work is so important, as it shows the first proof of concept of megahertz serial crystallography with one of the largest and most complex membrane proteins in photosynthesis: Photosystem I" says Fromme. "The work paves the way towards time-resolved studies at the EuXFEL to determine molecular movies of the light-driven path of the electrons in photosynthesis or visualize how cancer drugs attack malfunctioning proteins."

The EuXFEL, which recently began operation, is the first to employ a superconducting linear accelerator that yields exciting new capabilities including very fast megahertz repetition rates of its X-ray pulses—over 9000 times faster than any other XFEL—with pulses separated by less than 1 millionth of a second. With these incredibly brief bursts of X-ray light, researchers will be able to much more quickly record molecular movies of fundamental biological processes and will...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sorry Mr. Franklin, we couldn't keep it.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!