Land Heavier Payloads on Mars. Aim for the Ground and Then Pull up at the Last Moment

Universe Today | 2/15/2019 | Staff
Click For Photo: https://www.universetoday.com/wp-content/uploads/2011/12/PIA14835-1024x575.jpg




In the coming decades, a number of missions are planned for Mars, which include proposals to send astronauts there for the first time. This presents numerous logistical and technical challenges, ranging from the sheer distance to the need for increased protection against radiation. At the same time, there is also the difficulty of landing on the Red Planet, or what is referred to as the “Mars Curse“.

To complicate matters more, the size and mass of future missions (especially crewed spacecraft) will be beyond the capacity of current entry, descent, and landing (EDL) technology. To address this, a team of aerospace scientists released a study that shows how a trade-off between lower-altitude braking thrust and flight-path angle could allow for heavy missions to safely land on Mars.

Study - Journal - Spacecraft - Rockets - Christopher

The study, which recently appeared in the Journal of Spacecraft and Rockets, was authored by Christopher G. Lorenz and Zachary R. Putnam – a researcher with The Aerospace Corporation and an assistant professor of aerospace engineering at the University of Illinois, respectively. Together, they investigated different landing strategies to see which could overcome the “Mars Curse”.

Simply put, landing on Mars is a difficult business, and only 53% of spacecraft sent there since the 1960s have made it to the surface intact. To date, the heaviest vehicle to successfully land on Mars was the Curiosity rover, which weighed 1 metric ton (2,200 lbs). In the future, NASA and other space agencies plan to send payloads their with masses ranging from 5 to 20 tons, which is beyond conventional EDL strategies.

Cases - Vehicle - Atmosphere - Speeds - Mach

In most cases, this consists of a vehicle entering the Martian atmosphere at hypersonic speeds of up to Mach 30 and then slow down quickly due to air friction. Once they reach Mach 3, they deploy a parachute and fire their retrorockets to slow down further. The...
(Excerpt) Read more at: Universe Today
Wake Up To Breaking News!
True or False Prophet, check for God keeping seal of approval.
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!