Questions in quantum computing: How to move electrons with light

ScienceDaily | 2/12/2019 | Staff
TitanSwimr (Posted by) Level 3
Click For Photo:

Normal computers run on zeros and ones, and this binary code limits the volume and type of information the machines can process. Subatomic particles can exist in more than two discrete states, so quantum computers harness electrons to crunch complex data and perform functions at whiplash speed. To keep electrons in limbo, scientists capture the particles and expose them to forces that alter their behavior.

In the new study, published December 18, 2018 in Physical Review B, OIST researchers trapped electrons in a frigid, vacuum-sealed chamber and subjected them to microwaves. The particles and light altered each other's movement and exchanged energy, which suggests the sealed system could potentially be used to store quantum information -- a microchip of the future.

Step - Project - Lot - Research - Jiabao

"This is a small step towards a project that requires a lot more research," said Jiabao Chen, first author of the paper and a graduate student in the OIST Quantum Dynamics Unit, led by Prof. Denis Konstantinov. ." ..creating novel states of electrons for the purpose of quantum computing and storing quantum information."

Light, composed of fast, oscillating electric and magnetic fields can push around charged matter it meets in the environment. If light vibrates at the same frequency as electrons it encounters, the light and particles can exchange energy and information. When that occurs, the motion of the light and electrons is "coupled." If the energy exchange occurs more quickly than other light-matter interactions in the environment, the motion is "strongly coupled." Here, the scientists set out to achieve a strongly coupled state using microwaves.

Coupling - Step - Towards - Control - Particles

"Achieving strong coupling is an important step towards quantum mechanical control over particles using light," said Chen. "This may be important if we want to generate some non-classical state of matter."

To observe strong coupling clearly, it helps to isolate electrons from misleading "signal noise" in their environment,...
(Excerpt) Read more at: ScienceDaily
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!