X-ray fluorescence mapping to measure tumour penetration by a novel anticancer agent

phys.org | 6/19/2018 | Staff
applekip (Posted by) Level 3
Click For Photo: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/xrayfluoresc.jpg

A new anticancer agent developed by the University of Warwick has been studied using microfocus synchrotron X-ray fluorescence (SXRF) at I18 at Diamond Light Source. As described in the Journal of Inorganic Biochemistry, researchers saw that the drug penetrated ovarian cancer cell spheroids and the distribution of zinc and calcium was perturbed.

Platinum-based chemotherapy agents are used to treat many cancer patients, but some can develop resistance to them. To address this issue, scientists from the University of Warwick sought to employ alternative precious metals. They developed an osmium-based agent, known as FY26, which exhibits high potency against a range of cancer cell lines. To unlock the potential of this novel agent and to test its efficacy and safety in clinical trials, the team need to fully understand its mechanism of action.

FY26 - Tumours - Team - Cancer - Spheroids

To explore how FY26 behaves in tumours, the team grew ovarian cancer spheroids and used SXRF at I18 to probe the depth of penetration of the drug. They noted that FY26 could enter the cores of the spheroids, which is critical for its activity and very encouraging for the future of the drug. SXRF also enabled them to probe other metals within the cells, which showed that the distribution of zinc and calcium was altered, providing new insights into the mechanism of FY26-induced cell death.

Currently some of the most effective cancer treatments involve platinum-based drugs, which are used in almost half of all cancer patients who need chemotherapy. However, resistance to platinum compounds is increasing, and as such there is an urgent need to find alternative anticancer agents.

Team - Scientists - University - Warwick - Attention

A team of scientists from the University of Warwick turned their attention to other types of precious metals and developed a series of organo-osmium complexes. One of them, termed FY26, stood out in early experiments and when screened by the Sanger Institute against...
(Excerpt) Read more at: phys.org
Wake Up To Breaking News!
Sign In or Register to comment.

Welcome to Long Room!

Where The World Finds Its News!